Automatic Annotation of Axoplasmic Reticula in Pursuit of Connectomes

نویسندگان

  • Ayushi Sinha
  • William Gray Roncal
  • Narayanan Kasthuri
  • Ming Chuang
  • Priya Manavalan
  • Dean Kleissas
  • Joshua T. Vogelstein
  • R. Jacob Vogelstein
  • Randal C. Burns
  • Jeff Lichtman
  • Michael M. Kazhdan
چکیده

Abstract: In this paper, we present a new pipeline which automatically identifies and annotates axoplasmic reticula, which are small subcellular structures present only in axons. We run our algorithm on the Kasthuri11 dataset, which was color corrected using gradient-domain techniques to adjust contrast. We use a bilateral filter to smooth out the noise in this data while preserving edges, which highlights axoplasmic reticula. These axoplasmic reticula are then annotated using a morphological region growing algorithm. Additionally, we perform Laplacian sharpening on the bilaterally filtered data to enhance edges, and repeat the morphological region growing algorithm to annotate more axoplasmic reticula. We track our annotations through the slices to improve precision, and to create long objects to aid in segment merging. This method annotates axoplasmic reticula with high precision. Our algorithm can easily be adapted to annotate axoplasmic reticula in different sets of brain data by changing a few thresholds. The contribution of this work is the introduction of a straightforward and robust pipeline which annotates axoplasmic reticula with high precision, contributing towards advancements in automatic feature annotations in neural EM data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Annotation of Axoplasmic Reticula in Pursuit of Connectomes using High-Resolution Neural EM Data

Authors' Names and Affiliations: Ayushi Sinha, William Gray Roncal, Narayanan Kasthuri, Jeff W. Lichtman, Randal Burns, Michael Kazhdan Department of Computer Science, The Johns Hopkins University, Baltimore, MD The Johns Hopkins University Applied Physics Laboratory, Laurel, MD Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA Center for Brain Science, Harvard Uni...

متن کامل

Tags Re-ranking Using Multi-level Features in Automatic Image Annotation

Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...

متن کامل

Fuzzy Neighbor Voting for Automatic Image Annotation

With quick development of digital images and the availability of imaging tools, massive amounts of images are created. Therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. Automatic image annotation (AIA) or refers to attaching words, keywords or comments to an image or to a selected part of it. In this paper,...

متن کامل

A CAD System Framework for the Automatic Diagnosis and Annotation of Histological and Bone Marrow Images

Due to ever increasing of medical images data in the world’s medical centers and recent developments in hardware and technology of medical imaging, necessity of medical data software analysis is needed. Equipping medical science with intelligent tools in diagnosis and treatment of illnesses has resulted in reduction of physicians’ errors and physical and financial damages. In this article we pr...

متن کامل

An Adaptive Image Content Representation and Segmentation Approach to Automatic Image Annotation

Automatic image annotation has been intensively studied for content-based image retrieval recently. In this paper, we propose a novel approach to automatic image annotation based on two key components: (a) an adaptive visual feature representation of image contents based on matching pursuit algorithms; and (b) an adaptive two-level segmentation method. They are used to address the important iss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1404.4800  شماره 

صفحات  -

تاریخ انتشار 2014